Accelerated Detection of Viral Particles by Combining AC Electric Field Effects and Micro-Raman Spectroscopy

نویسندگان

  • Matthew Robert Tomkins
  • David Shiqi Liao
  • Aristides Docoslis
چکیده

A detection method that combines electric field-assisted virus capture on antibody-decorated surfaces with the "fingerprinting" capabilities of micro-Raman spectroscopy is demonstrated for the case of M13 virus in water. The proof-of-principle surface mapping of model bioparticles (protein coated polystyrene spheres) captured by an AC electric field between planar microelectrodes is presented with a methodology for analyzing the resulting spectra by comparing relative peak intensities. The same principle is applied to dielectrophoretically captured M13 phage particles whose presence is indirectly confirmed with micro-Raman spectroscopy using NeutrAvidin-Cy3 as a labeling molecule. It is concluded that the combination of electrokinetically driven virus sampling and micro-Raman based signal transduction provides a promising approach for time-efficient and in situ detection of viruses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laser Micro-Raman Spectroscopy of CVD Nanocrystalline Diamond Thin Film

Laser micro-Raman spectroscopy is an ideal tool for assessment and characterization of various types of carbon-based materials. Due to its special optical properties (CrN) coated stainless steel substrates. NCD films have been investigated by laser micro-Raman spectroscopy. The fingerprint of diamond based materials is in the spectral region of 1000-1600 cm-1 in the first order of Raman scatter...

متن کامل

AC Electrophoresis; Deposition of Ceramic Nanaoparticles on In-plane Electrodes at Low Frequencies (RESEARCH NOTE)

Deposition of ceramic nanoparticles (dispersed in a non-aqueous suspension) on in-plane electrodes and under the influence of AC electric fields in the frequency range of 0.01 Hz - 10 kHz is investigated. Analysis of the particle response to the applied field is a difficult task due to the mutual effect of electric- and hydrodynamic force which are present in the system. In this work, however, ...

متن کامل

Rapid identification of bacteria utilizing amplified dielectrophoretic force-assisted nanoparticle-induced surface-enhanced Raman spectroscopy

Dielectrophoresis (DEP) has been widely used to manipulate, separate, and concentrate microscale particles. Unfortunately, DEP force is difficult to be used in regard to the manipulation of nanoscale molecules/particles. For manipulation of 50- to 100-nm particles, the electrical field strength must be higher than 3 × 10(6) V/m, and with a low applied voltage of 10 Vp-p, the electrode gap needs...

متن کامل

Rapid mixing of Newtonian and non-Newtonian fluids in a three-dimensional micro-mixer using non-uniform magnetic field

The mixing of Newtonian and non-Newtonian fluids in a magnetic micro-mixer was studied numerically using  ferrofluid. The mixing process was performed in a three-dimensional steady-state micro-mixer. A magnetic source was mounted at the entrance of the micro-channel to oscillate the magnetic particles. The effects of electric current, inlet velocity, size of magnetic particles, and non-Newtonia...

متن کامل

Fundamental differences between micro- and nano-Raman spectroscopy.

Electric field polarization orientations and gradients close to near-field scanning optical microscope (NSOM) probes render nano-Raman fundamentally different from micro-Raman spectroscopy. With x-polarized light incident through an NSOM aperture, transmitted light has x, y and z components allowing nano-Raman investigators to probe a variety of polarization configurations. In addition, the str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015